

The Oil Report February 2016

Oil the News that's Fit to Print!

Everyone's favorite part of the newsletter is the Report of the Month, so we thought this month we'd give you what you really want to see -- engine problems that you don't have to deal with! Below are four samples, each with some sort of problem. We have reported what the owner told us in the comments below each report. But before you look at the answer, take a minute to study the data. Can you figure out what went wrong?

Report of the Month

We included a picture of this 2007 VW GTi's 2.0L problem. (It's not covering up any important data.) To learn more about where the elements are coming from, click here.

MI/HR on Oil	9,156	UNIT/	8,045	6,035	6,697	8,126	
MI/HR on Unit	82,902		73,746	65,700	59,665	52,668	AVERAGES
Sample Date	5/20/2014	AVENAGES	11/5/2013	6/5/2013	2/12/2013	10/4/2012	
ALUMINUM	8	5	5	3	7	4	4
CHROME	2	1	2	1	1	1	1
IRON	126	60	103	41	60	39	27
COPPER	8	3	4	2	3	3	4
LEAD	2	1	1	0	0	1	2
TIN	2	1	0	0	0	2	1
MOLYBDENUM	0	9	3	1	3	13	33
NICKEL	1	1	1	0			1
POTASSIUM	6	3	3	2			3
BORON	43	14	19	26		1/6	52
SILICON	4	4	3	2	NE		8
SODIUM	7	11	7	12		5	9
CALCIUM	1952	1796	2400	2022			2245
MAGNESIUM	23	329	42	19			189
PHOSPHORUS	744	796	852	821			849
ZINC	842	873	872	909			981
BARIUM	0	0	0	0		1	0

"It was driving me crazy about what in the world had gone wrong with iron in this last oil change. Well apparently the cam follower had started to wear a while back, causing the increase in iron. Then after the follower wore completely through during this last oil change, iron shot way up as (I'm guessing) the broken follower started eroding the cam lobe. You can see in the picture the follower that rides along the lobe, which powers the high pressure fuel pump. If you look very closely, there is a black vertical stripe on the edge of the follower; that is the teflon coating, which apparently when gone causes metal-on-metal friction shear, which eventually consumes the follower."

EMENTS IN DADTS DED MILLION

Report of the Month

Check out the report on this '02 BMW 3.2L S54 engine. Can you figure out what's wrong? To learn more about where the elements are coming from, click here.

MI/HR on Oil	5,424	UNIT/			== =
MI/HR on Unit	181,424	LOCATION			UNIVERSAL AVERAGES
Sample Date	6/14/2014	AVERAGES			
ALUMINUM	15	15			4
CHROME	0	0			0
IRON	21	21			10
COPPER	7	7			8
LEAD	27	27			5
TIN	0	096			1
MOLYBDENUM	96	56			51
NICKEL	1	1			1
POTASSIUM	1	1			2
BORON	40	40			80
SILICON	7	7			5
SODIUM	8	8			7
CALCIUM	2288	2288			1895
MAGNESIUM	325	325			426
PHOSPHORUS	855	855			844
ZINC	1050	1050			1005
BARIUM	0	0			0
		Values Should Be*		 	
SUS Viscosity @210°F	96.9	80-100			
cSt Viscosity @ 100°C	19.63	15.5-20.06			
Flashpoint in °F	385	375			
Fuel %	<0.5	<2.0			
Antifreeze %	0.0	0.0			
Water %	0.0	0.1			
Insolubles %	0.2	<0.6			
TBN					1

It's short and sweet with this one: "Shortly after this sample, this engine suffered a major rod bearing failure. BMW's M3 E46 is notorious for rod bearing wear, which you can see in the high lead reading. The original set of rod bearings in this engine were replaced at 40,000 miles under warranty. The second set was totally gone at 185,000 miles." We've heard the tolerances from the factory are extremely tight in the S54 engine.

Report of the Month

This Corvette's LS-7 7.0L engine's problem really started in the second sample. Can you tell what it is?

To learn more about where the elements are coming from, click here.

MI/HR on Oil		UNIT/	2,000			
MI/HR on Unit		LOCATION	26,000	13,500		UNIVERSAL AVERAGES
Sample Date	10/6/2014	AVERAGES	9/25/2014	1/20/2012		
ALUMINUM	2	5	5	9		4
CHROME	1	3	2	7		2
IRON	26	73	31	163		37
COPPER	2	4	3	6		4
LEAD	3	20	38	19		8
TIN	1	2	5	0		1
MOLYBDENUM	58	85	73	125		102
NICKEL	0	1	1	2		1
TITANIUM	0	3	8	0		4
BORON	6	55	90	68		83
SILICON	4	11	17	13		10
SODIUM	2	6	6	10		13
CALCIUM	2273	2008	1085	2665		2188
MAGNESIUM	53	236	639	17		279
PHOSPHORUS	811	738	653	751		780
ZINC	934	840	742	843		899
BARIUM	0	0	0	0		0
		Values Should Be*				
SUS Viscosity @210°	57.6	55-62	59.7	59.3		
cSt Viscosity @ 100°C	9.54	8.8-11.1	10.14	10.01		
Flashpoint in °F	365	>365	420	395	 	
Fuel %	TR	<2.0	<0.5	<0.5		

	Flashpoint in °F	305	>365	420	395	
)	Fuel %	TR	<2.0	<0.5	<0.5	
	Antifreeze %	0.0	0.0	0.0	0.0	
)	Water %	0.0	0.1	0.0	0.0	
	Insolubles %	0.3	<0.6	0.3	0.3	
	TBN					

Don't be fooled by the first report - most of that metal was from wear-in. The real problem started in the second report. The customer states: "My September report showed a large increase in titanium. I pulled the heads and popped a valve spring, only to find the intake valve ready to fall out. All 16 had hard wear due to faulty valve guides. Better to find it this way than out on the road at full speed. And GMPP could not argue, paid full repairs of \$7,000. So glad I found it - this could have been real bad. All Z06 427's need their oil tested forever!"

Report of the Month

This 2004 RAV-4 has never had a transmission oil change! What do you think - is it doomed? To learn more about where the elements are coming from, click here.

MI/HR on Oil	265,000	UNIT/			
MI/HR on Unit	265,000				UNIVERSAL AVERAGES
Sample Date	3/6/2015	AVERAGES			
ALUMINUM	322	322			19
CHROME	13	13			0
IRON	1328	1328			54
COPPER	327	327			65
LEAD	760	760			15
TIN	11	11			3
MOLYBDENUM	2	2			1
NICKEL	2	2			1
POTASSIUM	4	4			2
BORON	32	32			77
SILICON	62	62			18
SODIUM	10	10			6
CALCIUM	110	110			145
MAGNESIUM	4	4			12
PHOSPHORUS	227	227			324
ZINC	75	75			41
BARIUM	11	11			3
		Values			

Should Be*

		enedia Be		
SUS Viscosity @210°F	44.1	43-51		
cSt Viscosity @ 100°C	5.44	5.1-7.9		
Flashpoint in °F	370	>335		
Fuel %	-	-		
Antifreeze %	-	-		
Water %	0.0	<0.1		
Insolubles %	TR	<0.1		
TBN				

This one isn't a mystery - the oil has never been changed in this transmission. But you know what? All things considered, this is not that bad of a report. There's a lot of metal here, of course, but given that it's never had an oil change in all its 265,000 miles, things could be worse. We're especially impressed with the physical condition of the oil - that's the numbers you see in the Properties box at the bottom. When transmission oil is run too long, we usually find a low viscosity reading and high insolubles. Both those are okay. So the oil has collected a lot of metal since this unit rolled out of the factory, but an oil change will wash most of this stuff out and leave the transmission shifting better and happier all around.

ELEMENTS IN PARTS PER MILLION

Jim renovates the new Blackstone office in 2005.

Jim in the original Blackstone office, November 2000.

Jim Stark passed away peacefully at his home in Ossian, Indiana on Nov. 20, 2015. He was 73.

Jim was an inventor, entrepreneur, pilot, musician, writer, workshop tinkerer, mechanic, and an all-around interesting guy.

He enjoyed happy hour (three-beer limit unless scotch was available), playing guitar and the ukulele, traveling and camping with his wife Kathy, passionately rooting for Purdue, hot tubbing, writing stories, John Prine music, and checking himself out of the hospital. Jim and Kathy played music wherever they went on their travels across the country.

He founded Blackstone Laboratories in 1985, a world-class oil analysis company devoted to helping people learn more about the engines and machines by testing oil. He started this company with his brothers Bob and John, and was later joined by his son, Ryan, daughter Kristin, and a whole host of dedicated hard-working employees. He was building his own airplane – a Van's RV12 – just before he died.

Jim survived a tour in Vietnam (a First Cavalry helicopter mechanic), crashing an airplane, two heart attacks and two heart surgeries, jumping out of an airplane when he was 70 (barely), and the doctors in Indianapolis before lung cancer and a fall got him in the end.

His spirit is among the stars, and he will be greatly missed by all who loved him.

World-beaters Jim Stark and his brother Bob show off their new spectrometer in 1985.