Report of the Month

What changed between the October 2011 sample and the March 2012 sample that made this F250 start wearing so much better?

To learn more about where the elements are coming from, click here.

	MI/HRon Oil	9,100	UNIT/	11,371	8,782	10,080	7,643	
ELEMENTS IN PARTS PER MILLION	MI/HRon Unit	256,000	LOCATION AVERAGES	246,900	221,670	206,572	198,929	UNIVERSAL AVERAGES
	Sample Date	03/11/12	AVENAGEO	10/28/11	08/18/11	05/11/11	04/23/11	
	ALUMINUM	2	3	2	2	2	2	3
	CHROME	1	1	1	1	1	1	1
	IRON	20	49	106	52	98	67	32
	COPPER	3	4	4	3	4	3	3
	LEAD	0	11	15	9	15	10	3
	TIN	0	1	3	0	4	0	1
	MOLYBDENUM	1	4	3	3	5	2	34
	NICKEL	1	3	1	1	1	1	0
	POTASSIUM	4	5	27	52	857	855	5
	BORON	0	6	9	25	643	697	55
	SILICON	10	7	5	5	5	4	11
	SODIUM	2	7	22	23	13	16	5
	CALCIUM	3703	3441	3247	3023	2618	3065	2632
	MAGNESIUM	10	24	11	13	19	21	199
	PHOSPHORUS	1178	1119	1008	978	930	1062	1106
	ZINC	1247	1299	1114	1058	1116	1112	1275
	BARIUM	0	0	0	0	0	0	1
Values Should Be*								
	SUS Viscosity @210°F	64.8	64-78	73.9	70.3	71.3	67.8	
	cSt Viscosity @100℃	11.56	11.3-15.3	13.98	13.02	13.29	12.37	
	Rashpoint in °F	445	>415	470	465	440	445	

*THIS COLUMN APPLIES ONLY TO THE CURPENT SAMPLE

< 0.5

?

0.0

0.3

< 0.5

POS

0.0

0.3

< 0.5

0.0

0.0

0.5

6.5

< 0.5

0.0

0.0

0.3

8.3

This engine was generating a lot of iron and lead. Lead is a bearing material, while iron is from a steel part such as a rotating shaft. The solution was a new high-pressure oil pump. After he replaced it, voila! Wear dropped like a rock. Potassium and sodium show a trace of coolant, but that was from an unrelated radiator problem. Also, just a post script for this engine: a lifter broke during the summer of 2012 and that, coupled with a lingering problem from the radiator, caused the engine to bite the dust. He replaced it with a used 6.0L and is happily on the road again!

<0.5

0.0

0.0

0.2

<2.0

0.0

0.1

0.8

PROPERTIES

Fuel %

Water %

TBN

TAN

ISO Code

Antifreeze %

Insolubles %