Report of the Month

This GTSIO-520 is no longer flying. What happened?

To learn more about where the elements are coming from, click here.

				KTICIC.	
MI/HR on Oil	22	UNIT/			
MI/HR on Unit	115	LOCATION AVERAGES			UNIVERSA AVERAGES
Sample Date	10/11/12	AVERAGES			
ALUMINUM	29	23			5
CHROME	8	12			7
IRON	56	74			45
COPPER	8	9			4
LEAD	2732	2658			4578
TIN	8	4			1
MO LYBDENUM	10	9			3
NICKEL	39	31			15
POTASSIUM	0	0			1
BORON	1	1			0
SILICON	11	8			6
SODIUM	0	0			1
CALCIUM	87	84			12
MAGNESIUM	5	4			1
PHOSPHORUS	88	93			217
ZINC	7	5			6
BARIUM	0	0			0
		Values Should Be*			_
SUS Viscosity @210°F	86.4	82-105			
cSt Viscosity @ 100°C	17.10	16.0-21.8			
Flashpoint in °F	470	>430			
Fuel %	<0.5	<1.0			
Antifreeze %	_	-			•
Water %	0.0	0.1			1
Insolubles %	0.3	<0.6			1
TBN					1
					1

*THIS COLUMN APPLIES ONLY TO THE CURRENT SAMPLE

This engine suffered a catastrophic bearing failure in flight after this sample was taken. Bearing problems can be hard to see in analysis because lead, the most prominent bearing metal, is obscured by 100LL from blow-by past the rings. Still, this engine was clearly not right. Copper and tin likely show bearing wear, and aluminum, iron, and nickel are also out of line. The crank had worn away the bearing completely and was eating into the case. The filter was fill of metal from the failure. One speculation as to the cause of the failure is that this type of engine has an oil cooler, which can drain if the engine sits for a while, which this one did. You then have to prime the oil cooler before running the engine. If that's not done, it could possibly lead to oil starvation.

TAN

ISO Code