Report of the Month

Whoa, daddy. That's a lot of metal. Can you tell what's going on with this O-300-D?

To learn more about where the elements are coming from, click here.

	MI/HR on Oil	25	UNIT/	28	27	32	34	
	MI/HR on Unit	149	LOCATION AVERAGES	98	38	1724	1689	UNIVERSAL AVERAGES
	Sample Date	6/11/2016	AVENAGES	6/20/2015	5/10/2014	5/29/2013	10/16/2012	
	ALUMINUM	192	7	29	26	10	6	8
	CHROME	11	11	11	3	15	10	5
NO	IRON	124	34	87	77	43	39	39
MILLION	COPPER	21	10	21	48	14	11	10
	LEAD	3379	2620	2902	1697	4069	3099	2185
PER	TIN	4	1	3	4	2	1	1
S	MOLYBDENUM	9	2	5	4	3	2	1
PART	NICKEL	6	1	3	2	2	1	1
UN P	POTASSIUM	2	1	0	9	0	0	1
	BORON	0	0	1	1	1	1	1
EMENTS	SILICON	46	6	28	42	9	2	7
ELEM	SODIUM	2	1	2	2	1	1	1
	CALCIUM	6	4	7	2	7	2	13
	MAGNESIUM	7	2	4	4	2	2	8
	PHOSPHORUS	2	3	4	0	0	0	361
	ZINC	2	2	3	3	3	1	5
	BARIUM	0	0	0	0	0	0	0
			Values Should Be*					
	SUS Viscosity @210°F	91.6	86-105	96.3	77.1	90.7	94.1	
	cSt Viscosity @ 100°C	18.36	17.0-21.8	19.48	14.80	18.14	18.97	
ES	Flashpoint in °F	465	>430	465	525	485	520	
RTI	Fuel %	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	
PROPERTI	Antifreeze %	-	-	-	-	-	-	
	Water %	0.0	0.1	0.0	0.0	0.0	0.0	

We had given the owner of this Cessna a phone call when we found so much metal in his oil, so he and his mechanic did some investigative work. The borescope came up clean in all cylinders with no problems found, but one cylinder had low compression... "almost zero," he said. When they pulled the cylinders off, chunks of metal literally fell out of the cylinder and into his hand. The second ring had completely broken, and that actualy detroyed the ring land between the second and third ring. The pieces of the broken ring itself were still in the cylinder, but the aluminum from the ring land was small enough to escape. They cut the filter open (which they hadn't done prior to sending us the sample) and found many large pieces of aluminum throughout the filter, which corresponds with the large spike in aluminum in analysis. The elevated chrome is from the rings. The owner said that without our analysis, he never would have known anything was wrong, since on a six-cylinder engine he wasn't noticing a loss of power and there were no obvious problems apparent on his end (until the oil filter was cut open, anyway). The mechanic said the problem was caught early enough that they wouldn't have to replace the whole cylinder - just rehone and put in a new piston and rings - so we definitely saved him a few bucks this time around!

0.3

0.4

0.4

0.4

© Copyright Blackstone Labortories, Inc. 2017

0.5

<0.6

Insolubles %

TBN