Guide to Contamination Standards

Courtesy of Parker Hannifin

This guidebook is aimed at engineers, technicians and quality control personnel involved in contamination control. Its purpose is to make available accepted and widely-used cleanliness specification levels for liquid samples.

The tables in this guide allow users of using automatic portable particle counters to see the relationship between raw particle counts at various sizes and the reporting code numbers of various contamination standards.

A NOTE ON THE FIGURES USED

Note that some of the table entries are defined as cumulative counts (e.g. "> 6μ m") and others are defined as differential counts (e.g. $6-14\mu$ m").

Instances of particle sizes given as " μ m" refer to ACFTD (i.e. Air Cleaner Fine Test Dust) distributions. Instances of particle sizes given as " μ m(c)" refer to MTD (i.e. ISO Medium Test Dust) distributions.

All standards are in counts per volume, and provide easy methods for converting particle counts into limits that are simple to interpret. By noting the requirements of the standard, particle counts can be accurately converted to contamination levels.

ISO Cleanliness Code

Hydraulic Fluid Contamination

ISO code	Number of pa	rticles per ml
number	More than	Up to and including
22	20,000	40,000
21	10,000	20,000
20	5,000	10,000
19	2,500	5,000
18	1,300	2,500
17	640	1,300
16	320	640
15	160	320
14	80	160
13	40	80
12	20	40
11	10	20
10	5	10
09	2.5	5
08	1.3	2.5
07	0.64	1.3

Suggested Acceptable Contamination Codes

ISO code numbers	Type of system	Typical components	Sensitivity
23 / 21 / 17	Low pressure systems with large clearances	Ram pumps	Low
20 / 18 / 15	Typical cleanliness of new hydraulic oil straight from the manufacturer. Low pressure heavy industrial systems or applications where long-life is not critical	Flow control valves Cylinders	Average
19 / 17 / 14	General machinery and mobile systems Medium pressure, medium capacity	Gear pumps/motors	Important
18 / 16 / 13	World Wide Fuel Charter cleanliness standard for diesel fuel delivered from the filling station nozzle. High quality reliable systems General machine requirements	Injector valve and high pressure pumps/ motors Directional and pressure control valves	Critical
17 / 15 / 12	Highly sophisticated systems and hydrostatic transmissions	Proportional valves	Critical
16 / 14 / 11	Performance servo and high Pressure long-life systems e.g. Aircraft machine tools, etc.	Industrial servovalves	Critical
15 / 13 / 09	Silt sensitive control system with very high reliability Laboratory or aerospace	High performance servovalves	Super critical

NOTE: The three figures of the ISO code numbers represent ISO level contamination grades for particles of $>4\mu m(c)$, $>6\mu m(c)$ and $>14\mu m(c)$ respectively.

NAS 1638 Table

The NAS 1638 cleanliness standard was developed for aerospace components in the US and is still widely used for industrial and aerospace fluid power applications.

The figures are differential counts, and the NAS class is usually reported as a single figure representing the maximum allowed particle counts (i.e. worst case) for designated particle size ranges.

Siz	e range	5–15 μm	15–25 μm	25–50 μm	50–100 μm	>100 µm
	00	125	22	4	1	0
100ml)	0	250	44	8	2	0
E 0	1	500	89	16	3	1
maximum les per 10	2	1,000	178	32	6	1
ma	3	2,000	356	63	11	2
on ma rticles	4	4,000	712	126	22	4
pal	5	8,000	1,425	253	45	8
es (based limits, pa	6	16,000	2,850	506	90	16
SS ≔	7	32,000	5,700	1,012	180	32
classes ation lir	8	64,000	11,400	2,025	360	64
) cl	9	128,000	22,800	4,050	720	128
NAS	10	256,000	45,600	8,100	1,440	256
NAS classe contamination	11	512,000	91,000	16,200	2,880	512
O	12	1,024,000	182,400	32,400	5,760	1,024

SAE AS4059 rev E Table

Note that this standard is technically identical to ISO 11218.

	Maximum contamination limits (particles per ml)						
MTD	>4µm(c)	>6µm(c)	>14µm(c)	>21µm(c)	>38µm(c)	>70µm(c)	
ACFTD	>2µm	>5µm	>15µm	>25µm	>50µm	>100µm	
Size code	Α	В	С	D	E	F	
000	195	76	14	3	1	0	
00	390	152	27	5	1	0	
0	780	304	54	10	2	0	
1	1,560	609	109	20	4	1	
2	3,120	1,220	217	39	7	1	
3	6,250	2,430	432	76	13	2	
4	12,500	4,860	864	152	26	4	
5	25,000	9,730	1,730	306	53	8	
6	50,000	19,500	3,460	612	106	18	
7	100,000	38,900	6,920	1,220	212	32	
8	200,000	77,900	13,900	2,450	424	64	
9	400,000	156,000	27,700	4,900	848	128	
10	800,000	311,000	55,400	9,800	1,700	256	
11	160,000	623,000	111,000	19,600	3,390	512	
12	320,000	1,250,000	222,000	39,200	6,780	1,024	

MTD ISO11171 (Calibration or optical microscope count – particle size based on projected area equivalent diameter)

ACFTD ISO4402 (Calibration or optical microscope count – particle size based on longest dimension)

GOST 17216-2001 Table

The GOST standard is developed by the Technical Committee of Standardization TK 184 "Ensuring Industrial Cleanliness" introduced by the Government of Russia.

Adopted by the Inter-governmental Committee of Standardization Metrology and Certification (Protocol No. 19 dated 24 May 2001).

Siz	e range	5–10µm	10-25µm	25-50µm	50–100μm	>100µm
	00	8	4	1	0	0
=	0	16	8	2	0	0
00m	1	32	16	3	0	0
er 1	2	63	32	4	1	0
d Sé	3	125	63	8	2	0
Particle contamination level by class (particles per 100ml)	4	250	125	12	3	0
(par	5	500	250	25	4	1
388	6	1,000	500	50	6	2
V Cla	7	2,000	1,000	100	12	4
e p	8	4,000	2,000	200	25	6
<u> </u>	9	8,000	4,000	400	50	12
tion	10	16,000	8,000	800	100	25
ina	11	31,500	16,000	1,600	200	50
Itan	12	63,000	31,500	3,150	400	100
COL	13	-	63,000	6,300	800	200
<u>cle</u>	14	_	125,000	12,500	1,600	400
Parti	15	_	-	25,000	3,150	800
	16	-	-	50,000	6,300	1,600
	17	-	-	-	125,000	3,150

NAV AIR 10-1A-17 Table

The Navy Standard for Hydraulic Fluids used for aircraft hydraulic systems is defined in the Aviation Hydraulics Manual (1989), Table 2-1, Navy Standard for Particulate Cleanliness.

NAVY STANDARD FOR HYDRAULIC FLUIDS - USED FOR AIRCRAFT HYDRAULIC SYSTEMS

Particle Contamination Level by Class							
Particle size in µm	0	1	2	3	4	5	6
	Number of particles per 100ml						
5–10	2,700	4,600	9,700	24,000	32,000	87,000	128,000
10–25	670	1,340	2,680	5,360	10,700	21,400	42,000
25–50	93	210	380	780	1,510	3,150	6,500
50–100	16	28	56	110	225	430	1000
>100	1	3	5	11	21	41	92

ISO/NAS/SAE Code Comparison Table

The comparisons relate to particle count data only. To conform to any particular standard, reference should be made to the recommended experimental procedure.

ISO/DIS 4406	Defence S	Std. 05/42	NIAC 1000	CAE 740
BS 5540/4 codes	Table A	Table B	NAS 1638	SAE 749
13 / 11 / 08			2	
14 / 12 / 09			3	0
15 / 13 / 10			4	1
16 / 14 / 09		400F		
16 / 14 / 11			5	2
17 / 15 / 09	400			
17 / 15 / 10		800F		
17 / 15 / 12			6	3
18 / 16 / 10	800			
18 / 16 / 11		1300F		
18 / 16 / 13			7	4
19 / 17 / 11	1300	2000		
19 / 17 / 14			8	5
20 / 18 / 12	2000			
20 / 18 / 13		4400F		
20 / 18 / 15			9	6
21 / 19 / 13	4400	6300F		
21 / 19 / 16			10	
22 / 20 / 13	6300			
22 / 20 / 17			11	
23 / 21 / 14	15,000			
23 / 21 / 18			12	
24 / 22 / 15	21,000			
25 / 23 / 17	100,000			

PPM Conversion Table

Percent contar	Percent contamination vs. PPM (parts per million)				
Percent	PPM				
100%	1,000,000				
10%	100,000				
1%	10,000				
0.1%	1,000				
0.01%	100				
0.001%	10				

Volume				
1 litre	= 1 000 ml			
1PPM	= 1 µl in 1 litre			
Example 1				
400 PPM in 1 litre	= 400 µl			
Example 2				
A reading of 250 PPM equates to a quantity of absorbed water in a 400 litre				

A reading of 250 PPM equates to a quantity of absorbed water in a 400 litre capacity system of 0.1 litre.