This is a good place to identify things like bypass		B	EQUIP. MAKE/MOD		ORT		OIL TYP	2/16 E & GRAD E INTERVA		15 F250 28751 CC: Visa ansmission F	You'll need client ID if to log on to www.black labs.net ar your report	you want o stone- nd view
filtration, mods, etc.		TS CLIENT	OSCAR HUFF PHONE: (828) 123-5897 OSCAR'S WORKSHOP FAX: (828) 123-1547 132 PERIWINKLE RD ALT PHONE: (828) 123-1564 STE. 102 EMAIL: oscar@bellsouth.com SWANNANOA, NC 18752 OSCAR: Things have definitely taken a turn for the worse. Iron and chrome are cautionary, showing a drastic increase in steel wear the thumping noise is another sign									
The		COMMENTS	MI/HR on Oil	wrong. A brc	ер ше он спаг	mple rep iges very sin		vg	the issue. C	hange this	oil and	This column shows average
amount of oil you added between			MI/HR on Unit Sample Date Ma	47,356 12/02/18 0 qts	UNIT / LOCATION AVERAGES						IVERSAL	wear for all the samples we've seen
oil changes. This is the average wear for this particular type of engine for you or your business.		MILLION	ALUMINUM CHROMIUM IRON	4 7 530	4 4 287	4 1 44				($\sum_{\substack{1\\23\\2}}^{3}$	from this type of tranny.
		RTS PER N	COPPER LEAD TIN MOLYBDENHM	2 2 0 4	4 3 1 4	3 3 0 5					3 3 1 209	
		S IN PAR	MANGANESE SILVER TITANIUM	1 0 0	1 0 0	1 0 0					0 0 0 0	The
			POTASSIUM BORON SILICON	3 0 9	3 2 14	2)—				4 1 11	additives in this column are a mix
			SODIUM CALCIUM MAGNESIUM PHOSPHORUS	4 18 10 364	3 37 11 325	3 70 11 289				($ \begin{array}{r}3\\10\\\underline{5}\\316\end{array} $	of all different types of oil, so
			ZINC BARIUM	12 0	15 0 Values	18 0 From let	t to right.	these are	vour past sam		12 2	you can't compare them to your sample.
	17		Should Be* From left to right, these are your past samples. SUS Viscosity @ 210°F 45.5 69-80 45.9									
The tests in the)	cSt Viscosity @ 100°C	11.74	12.7-15.5	11.85						
Properties	V	ŝ	Flashpoint in °F	405	>410	390						
box look at the			Fuel %	0.5	<2.0	-			$-\downarrow$			
physical		ER	Antifreeze % Water %	0.0	0.0	- 0.0			—()			
condition of the oil.		NOF OF	Insolubles %	0.0	<0.6	0.0						
		L L L L L	TBN	0.0								
	-		TAN									
			ISO Code									
					* THIS COLUMN	APPLIES ONI	Y TO THE	CURRENT	SAMPLE			

416 E. PETTIT AVE. FORT WAYNE, IN 46806 (260) 744-2380

www.blackstone-labs.com

©COPYRIGHT BLACKSTONE LABORATORIES 2018

LIABILITY LIMITED TO COST OF ANALYSIS

Averages: Both the universal and unit averages are running averages and change with the number of samples we analyze.

Elements: Elements are quantified in the oil at parts per million levels (PPM). This list shows the most common sources of the elements in manual or automatic transmission oil. Following each element is a description of where it comes from. They are grouped by category.

Wear Metals

Aluminum: Housing, oil pump, bearings, gear and vane pumps Chromium: Ball and roller bearings, alloy of steel parts like gears Iron: Gears, bearings, shafts, some cases, clutch plates Copper: Bronze bushings, oil cooler oxides, clutch plates, brass fittings Lead: Residual gear marking compound, alloy of bronze Tin: Some bearing cages, alloy of bronze Nickel: Clutch bands, gear/shaft steel alloy Silver: Some soft friction bearings, Allison needle bearings Manganese: Alloy of steel Titanium: Trace wear metal

Contaminants

Potassium: Antifreeze **Sodium**: Antifreeze, additive in some engine oils **Silicon**: Airborne dirt, sealers, gaskets, sand-casted parts, and spray lubricants, antifreeze

Oil Additives

Boron Calcium Magnesium Phosphorus Zinc Barium

Physical properties

Viscosity/Flashpoint: If a contaminant is present in the oil, the Viscosity and Flashpoint will often be lower than stated in the "Values Should Be" line. A viscosity reading high or low may show oil oxidation.

Antifreeze %: Indicates the amount of antifreeze found in the oil. A question mark means we found possible traces of coolant, but not enough to definitively say it's there.

Water %: Indicates the amount of water found in the oil.

Insolubles %: Insolubles are solid materials present in the oil. They are typically free carbon from the oxidation of the oil itself, and accumulated metal in the system.