

Report of the Month

This Wright R-1820 radial has a problem. It's not obvious at all. Can you figure it out?

To learn more about where the elements are coming from, click here.

UNIT

 MAKE/MODEL:
 Wright R-1820-86B
 OIL TYPE & GRADE:
 Aeroshell W120 (AD)

 FUEL TYPE:
 Gasoline (Leaded)
 OIL USE INTERVAL:
 32 Hours

 ADDITIONAL INFO:
 North American T28B; BL-519096, oil screen and spin-on AirWolf filter

CHIP: This report looks a lot like the last one, though that's not necessarily a positive finding considering this oil run was about half as long as the previous sample. Metals holding steady over a shorter run actually means wear is higher on a per-hour basis. That being said, these results beat outright increases, and metals still compare nicely with averages for the engine type. We'll continue tracking silver (master rod bearing) and aluminum/iron (pistons/steel parts) in the next sample, but at this point no major issues stand out.

					50	50	50		
	MI/HR on Oil	32	UNIT / LOCATION AVERAGES	63	50	50	53	55	AVERAGES
	MI/HR on Unit	803		771	708	658	608	555	
	Sample Date	1/4/2021		10/22/2020	11/19/2019	7/9/2019	11/10/2018	7/2/2018	
	Make Up Oil Added	84 qts		128 qts	109 qts	120 qts	140 qts	145 qts	
NO	ALUMINUM	5	5	6	3	3	2	2	5
Ĕ	CHROMIUM	1	2	2	1	1	1	1	2
MIL	IRON	10	17	10	8	7	6	5	15
	COPPER	5	7	7	5	6	3	4	7
К	LEAD	1213	1556	1715	1227	1397	1151	1039	1245
Δ.	TIN	0	1	1	1	0	0	1	1
S	MOLYBDENUM	0	0	0	0	0	0	0	0
R	NICKEL	2	2	2	2	1	1	1	2
PA	MANGANESE	0	0	0	0	1	0	0	0
Z	SILVER	1	0	1	0	0	0	0	0
	TITANIUM	0	0	0	0	0	0	0	0
TS	POTASSIUM	0	1	0	0	1	0	0	1
Ш	BORON	0	1	0	0	1	0	0	0
ΕM	SILICON	7	8	10	10	11	7	11	8
EL	SODIUM	2	1	3	1	2	1	2	1
ш	CALCIUM	4	3	3	3	5	3	4	4
	MAGNESIUM	4	5	4	5	5	2	3	4
	PHOSPHORUS	4	5	3	4	4	6	8	4
	ZINC	2	2	2	2	3	2	2	2
	BARIUM	0	0	0	0	0	0	0	0

		Should Be*					
SUS Viscosity @ 210°F	110.6	105-125	119.5	112.7	116.3	109.8	113.5
cSt Viscosity @ 100°C	22.83	21.5-26.3	24.86	23.29	24.12	22.64	23.48
Flashpoint in °F	510	>450	525	500	500	495	500
Fuel %	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5
Antifreeze %	-		-		-	-	-
Water %	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Insolubles %	0.2	<0.6	0.4	0.4	0.2	0.3	0.5
TBN							
TAN							
ISO Code						10	

Values

The answer to this one is hidden in the comments. We briefly mentioned the 1 ppm silver and said, "no major issues stand out." But silver is a master rod bearing metal in radial engines, and because radials use so much oil, all the metal levels are diluted. When the owners saw the 1 ppm silver, they checked the filter and found small, visible silver flakes. Upon analysis, the flakes were found to be from the rod bearings. As a result, the owners ended up replacing the engine. They write: "That sample may have prevented and engine failure and/or subsequent loss of aircraft or life. We are firm believers in your process and company."

© Copyright Blackstone Labortories, Inc. 2021