

COMMENT

Report of the Month

This O-470-R had a problem. What happened? To learn where the elements are coming from, <u>click here</u> and scroll down.

MAKE/MODEL: Continental O-470-R	OIL TYPE & GRADE:	Aeroshell W100 (AD)
FUEL TYPE: Gasoline (Leaded)	OIL USE INTERVAL:	11 Hours
ADDITIONAL INFO: Cessna 182N, Nicke	& Superior cyls	

(We removed the first line of the comments, which gave away the problem.) Since this engine just got two new Superior cylinders, it's no surprise to find some chrome and iron wear-in. Superior jugs often produce more chrome than nitrided steel ones, so as long as we find progress there, we wouldn't assume poor ring wear. Most of the silicon in this sample is probably sealer or lube, but it wouldn't be a bad idea to check over air filtration in case it's coming from dirt. Check back to monitor for progress.

	MI/HR on Oil	11		3	33	17		
	MI/HR on Unit	14		52	49	17		UNIVERSAL
	Sample Date	1/26/2022	LOCATION AVERAGES	6/18/2021	4/19/2021	11/4/2020		AVERAGES
	Make Up Oil Added	1 qt	AVERAGEO	0 qts	3 qts	2 qts		
	ALUMINUM	13	12	30	10	3		9
Ц	CHROMIUM	23	12	24	15	1		9
MIL	IRON	66	83	88	76	9		42
	COPPER	9	16	9	13	15		6
ER	LEAD	692	1556	1146	1283	273		2889
Р	TIN	1	1	1	2	0		1
LS	MOLYBDENUM	0	1	0	1	0		1
Ŗ	NICKEL	1	3	1	1	0		5
ΡA	MANGANESE	3	2	1	1	1		1
Z	SILVER	0	0	0	0	0		0
S I	TITANIUM	0	0	0	0	0		0
Ê	POTASSIUM	0	0	0	0	0		1
ENT	BORON	0	2	1	2	3		1
ΕM	SILICON	17	35	17	37	60		8
H	SODIUM	2	4	3	3	9		1
	CALCIUM	5	17	80	7	36		34
	MAGNESIUM	1	1	2	1	1		1
	PHOSPHORUS	41	37	229	86	22		440
	ZINC	4	3	4	3	5		6
	BARIUM	0	0	0	0	0		0
			Values					

			Should Be*				
	SUS Viscosity @ 210°F	94.4	86-105	84.9	89.8	86.3	
	cSt Viscosity @ 100°C	19.04	17.0-21.8	16.75	17.92	17.09	
S	Flashpoint in °F	515	>460	495	490	505	
Ë	Fuel %	<0.5	<1.0	<0.5	<0.5	<0.5	
ĸ	Antifreeze %	-		-	-	-	
Ы	Water %	0.0	0.0	0.0	0.0	0.0	
ŝ	Insolubles %	0.3	<0.6	0.3	0.3	0.2	
đ	TBN						
	TAN						
	ISO Code						

When we received the 6/18/21 sample, the note with the sample said an incident was under investigation that caused very high CHTs in flight and total loss of compression in the #5 cylinder - note that there were only 3 hours on that sample. The follow-up sample in January said the engine was returned to the overhaul shop for disassembly following a detonation event in the #5 cylinder at 52 hours post-overhaul. The cause of detonation is currently unknown.

Report of the Month

This Franklin 6A has a problem. What's going on? To learn where the elements are coming from, <u>click here</u> and scroll down.

ΠIT

MAKE/MODEL: Franklin 6A-350-C1 FUEL TYPE: Gasoline (Leaded) ADDITIONAL INFO: Maule M5-220C

OIL TYPE & GRADE: Aeroshell 100 Mineral OIL USE INTERVAL: 20 Hours

Thanks for noting the good borescope results. We're a little surprised to see so much aluminum in this sample. And tin too, though it only increased 1 ppm and it's not really all that high in the grand scheme of things. This engine is still young enough that we don't yet know what's going to be normal, so maybe aluminum will settle down, though we're glad you're looking for anything unusual on your end. Metals (especially aluminum) should be decreasing, not increasing, so there could be some piston wear going on. Monitor for visible metal and check back.

				-			
	MI/HR on Oil	20	UNIT /	9			
	MI/HR on Unit	88	LOCATION	66			UNIVERSAL
	Sample Date	1/15/2022	AVERAGES	5/1/2021			AVERAGES
	Make Up Oil Added	10.5 qts					
N	ALUMINUM	35	25	14			9
MILLION	CHROMIUM	2	2	1			7
	IRON	31	35	38			52
	COPPER	6	6	5			8
PER	LEAD	1325	1235	1144			2110
٩	TIN	5	5	4			1
PARTS	MOLYBDENUM	0	0	0			0
R	NICKEL	1	1	0			2
PA	MANGANESE	1	1	1			1
	SILVER	0	0	0			0
NI	TITANIUM	0	0	0			0
ЗĽ	POTASSIUM	0	0	0			0
Ш	BORON	1	1	0			0
ELEMENTS	SILICON	13	14	14			9
H	SODIUM	1	2	3			1
11	CALCIUM	2	19	36			15
	MAGNESIUM	2	3	3			4
	PHOSPHORUS	83	673	1263			192
	ZINC	2	3	3			3
	BARIUM	0	0	0			0
			Values		•	• •	

			Should Be*			
	SUS Viscosity @ 210°F	93.9	82-105	82.8		
	cSt Viscosity @ 100°C	18.91	16.0-21.8	16.23		
IES	Flashpoint in °F	500	>440	475		
Ë	Fuel %	<0.5	<1.0	<0.5		
R	Antifreeze %	-		-		
ΡE	Water %	0.0	0.0	0.0		
RO	Insolubles %	0.5	<0.6	0.2		
đ	TBN					
	TAN					
	ISO Code					

The owner writes: I appreciate your commentary on the results. After sending this sample we pulled the quick drain off to re-seal and found what ended up being quite a lot of aluminum in the pan. We also found one piece of steel that used to be the tach drive gear. The aluminum was from the mag-driven gears. Yes, on the Franklin those are alumnum. They were of course shelled out. We've cleaned things up and once the part overhauls and the annual are done, we'll run a couple hours and drop the oil and send in another sample. Hopefully that tin will settle back down.

Report of the Month

This Lycoming IO-320 has a problem. What is it? To learn where the elements are coming from, click here and scroll down.

MAKE/MODEL: FUEL TYPE:

Lycoming IO-320-E2A Gasoline (Leaded) ADDITIONAL INFO: Piper PA18-160, Chrome Cyls **OIL TYPE & GRADE:** OIL USE INTERVAL: 5 Hours

Aircraft Engine Oil

Thanks for discussing this sample with us on the phone. As you know, we're concerned about the amount of chrome this IO-320 is making. To give the engine some credit, chrome did improve nearly 400 ppm compared to the first sample, though the shorter run helped significantly. But at the same time, you only did a partial oil change after the first sample, so a good portion of the chrome could be carryover. We suggest 1. Compression test/borescope of cylinders 2. Looking into why the engine's running hot 3. Another run of 5 hours to see how chrome trends.

	MI/HR on Oil	5		30	
	MI/HR on Unit		UNIT / LOCATION	220	UNIVERSAL
	Sample Date	11/30/2020	AVERAGES	8/4/2020	AVERAGES
	Make Up Oil Added			5 qts	
NO	ALUMINUM	17	27	27	
LIO	CHROMIUM	219	611	611	5
MIL	IRON	43	129	129	35
	COPPER	3	9	9	6
ER	LEAD	1516	4275	4275	2254
٩	TIN	1	3	3	
TS	MOLYBDENUM	0	1	1	0
∆R.	NICKEL	1	3	3	
ΡZ	MANGANESE	1	2	2	yours to look like that.
Z	SILVER	0	0	0	0
s S	TITANIUM	0	0	0	0
Ĥ	POTASSIUM	0	1	1	1
EN	BORON	1	2	2	1
ΕM	SILICON	6	10	10	5
	SODIUM	3	4	4	1
	CALCIUM	5	33	33	19
	MAGNESIUM	1	2	2	1
	PHOSPHORUS	28	104	104	821
	ZINC	2	6	6	4
	BARIUM	0	0	0	0

The owner writes: Symptoms of the problem were mainly high oil temps in cruise (210-230°F), and high CHTs in #1 & #3 cylinders, as well as rough running/vibrations in cruise & climb. Additionally the engine felt very underpowered. My engine is supposed to be rated at 160HP, but we had quite a difficult time getting off the water with two passengers, and one instructor who flew it said it felt like it had about as much power as his 100HP super cub.

Since I bought the aircraft used and didn't know the complete history on it, and since the engine only had ~225 hours on it in the 20 years since the major overhaul was done, I decided that I'd play it safe and pull all the cylinders after getting your oil analysis results of the extremely high chrome content, twice in a row.

The company who is inspecting and fixing/replacing my cylinders called me yesterday saying the following was wrong with my cylinders:

- the wrong piston rings were installed for chrome cylinders
- heavy wear in every cylinder
- scratches/gouges in #1 & #3 which tells him the plane likely sat for over a year in between startups
- evidence of blow by in #1 & #3
- small cracks in the cylinders

- several valves installed backwards (intake installed on exhaust side, & vice versa). He said this isn't a huge issue, but shows the laziness or inattention to detail by the mechanic who installed them (aka a warning sign that they did other things wrong, like use the completely wrong piston rings)

I'm getting two new (reman'd) cylinders to replace the ones with cracks. And overhauling everything else.